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Abstract
Resistance as a function of temperature and applied magnetic field for doped
manganese perovskites is simulated on the basis of a random-resistor-network
model. The network, consisting of ferromagnetic metallic particles with
number density p and paramagnetic insulating particles with number density
1 − p, is generated through the Monte Carlo method. Approximating p
by the reduced magnetization (m) determined from the mean-field theory,
we show that the simulation can yield the main features of the colossal
magnetoresistance in doped manganese perovskites. Comparisons between
simulated and experimental data are also presented for (La1−xYx)2/3Ca1/3MnO3

(x = 0.2). The excellent agreement between the simulations and experiments
gives strong support to the present approach.

Aside from their technological potential, doped manganese perovskites of the form
Re1−xBxMnO3 (Re = rare-earth cation, B = alkaline-earth cation) are important due to
the unusual magnetic and electronic properties [1]. Most notable of these properties is the
so-called colossal magnetoresistance (MR) [2], a substantial reduction of resistivity caused
by the applied magnetic fields. For the optimal cases in which x ∼ 1/3 and the tolerance
factor t � 0.91, the compound undergoes a transition from high-temperature insulating
behaviour to low-temperature metallic behaviour. This electronic transition is accompanied
by a simultaneous paramagnetic (PM)-to-ferromagnetic (FM) transition at almost the same
temperature (i.e., the Curie temperature Tc). The application of magnetic fields shifts the
transition to the higher-temperature regime, causing a substantial reduction in resistivity nearTc
and hence colossal MR. The origin of this effect is not well understood, although explanations
have been discussed involving double exchange (DE) [3], electron–phonon coupling [4], orbital
ordering effects [5], various polarons [6, 7] and a microscopic theory of electrical transport
recently developed recently by Alexandrov and Bratkovsky [8]. In the present work, we
report on the Monte Carlo simulations of resistance as a function of temperature and magnetic
field based on the random-resistor-network model consisting of FM metallic particles and PM
insulating particles. We show that using the reduced magnetization as the number density
of FM metallic particles, the simulation can yield the main features of the colossal MR

0953-8984/01/220509+06$30.00 © 2001 IOP Publishing Ltd Printed in the UK L509



L510 Letter to the Editor

generally reported for the optimal manganese perovskites. Simulations are also performed
for (La0.8Y0.2)2/3Ca1/3MnO3, showing an excellent agreement with experimental data.

It has been commonly believed that the perovskite-related manganites can accomplish a
dynamic phase segregation [9]. Because of the phase segregation, it is likely for the optimal
manganese perovskites that FM domains exist within the PM matrix for the temperature range
T > Tc, while PM regions exist in the FM background for the temperature range T < Tc.
Experimental evidence for the presence of short-range FM domains in the PM background can
be found in experiments such as electron paramagnetic resonance [10] and small-angle neutron
scattering measurements [6]. Experiments such as scanning tunnelling spectroscopy [12],
magnetic force microscope [13] and electron microscopy [14] measurements, on the other hand,
directly confirm the coexistence of FM domains and PM regions below Tc. According to the
DE mechanism [3], the charge carriers with same spin orientations can move easily; therefore,
the electrical conductivity is metallic in the FM state, whereas the electrical conductivity is
insulating in the PM state because of disorder scattering from charge carriers with different
spin orientations. It is therefore reasonable to assume that the sample is phase separated into
a mixture of FM metallic domains and PM insulating regions.

On the basis of the above consideration, a phenomenological model for resistance as
a function of temperature and magnetic field was recently proposed [11] in which the total
resistance is represented as a sum of two contributions, from the PM insulating phase and the
FM metallic phase. It is shown that this phenomenological model can quantitatively explain
experimental observations for the optimal manganese perovskites; however, FM metallic
and PM insulating regions are assumed to be electrically connected in series. Clearly, the
connection in an actual system should be much more complicated than this assumed form.
The actual situation should be that FM metallic and PM insulating regions randomly fill the
space of the sample. In order to create such a distribution, the Monte Carlo method is used,
which is described as follows.

We assume the sample to consist of dense grains of PM insulating particles and of FM
metallic particles packed together so that the particle centres occupy the nodes (or sites) of
a network lattice. Between each pair of particles i and j in the network lattice, current is
conducted through a ‘bond resistance’ Rij . The bond resistance Rij is determined from the
kinds of particle residing at sites i and j . Between each pair of particles of the same kind (FM
metal or PM insulator), the bond resistance is the resistance of the corresponding particles
themselves, i.e., Rij = RFM (or RPM ). If the two sites are occupied by different kinds of
particle, i.e., a FM metallic particle at site i and a PM insulating particle at site j , say, the bond
resistance between sites i and j is determined by

1

Rij
= 1

RPM
+

1

RFM
. (1)

The kinds of particle residing at sites i and j depend on the value of a computer-generated
random number. If this number is smaller than the chosen number density (p) of FM metallic
particles, the site is assigned a FM metallic particle. Otherwise the site is taken to be occupied
by a PM insulating particle. Through this process, the random resistor network can then be
constructed. Application of the Kirchhoff current law to each mesh then constitutes a set of
equations that may be solved numerically by the Monte Carlo method.

Quite recently, Monte Carlo simulations of electrical conductivity in zero field were
performed [15] for (La1−xYx)2/3Ca1/3MnO3 (x = 0, 0.1 and 0.2) using the random-
resistor-network model mentioned above. The simulations show excellent agreement with
experimental data over the whole temperature range covering high-temperature insulating and
low-temperature metallic regimes. From these simulations, it has been shown that the transition
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to a metallic state occurs as p (or f , the volume fraction of FM metallic phase) exceeds the
percolation threshold (10–20%). This suggests that the transition to the metallic state is due
to a percolation of FM metallic domains. In the present work, we shall show that upon the
application of magnetic fields, the electrical conductivity can also be simulated through the
random-resistor-network model mentioned above.

To perform the Monte Carlo simulation, we first need to know three quantities: RPM ,
RFM and p, which appear in the random-resistor-network model. As previously shown [11],
both RPM and RFM can be approximated by RPM = R0eEg/kBT and RFM = bT 2. Since
p represents the number density of FM metallic particles, it should be proportional to the
reduced magnetization m. We therefore approximate p by m which can be determined from
the mean-field theory. According to this theory, m can be expressed in terms of solutions of
the mean-field self-consistency equation [16]

m(h, t) = BJ

(
3J

J + 1

m + h

t

)
(2)

where BJ is the Brillouin function defined by

BJ (x) = 2J + 1

2J
cotanh

(
(2J + 1)x

2J

)
− 1

2J
cotanh

(
x

2J

)
.

J is the angular momentum quantum number, t (≡T/Tc) is the normalized temperature, h
(≡H/He) is the normalized magnetic field andHe is the saturation exchange field. Assuming
that the orbital angular momentum is quenched, the effective value of J is then calculated to
be 1.83 for the optimal manganese perovskites of the form Re2/3B1/3MnO3 with a mixture of
Mn3+ (S = 2) and Mn3+ (S = 3

2 ) ions. Taking Tc = 90 K, m (and hence p) as a function of T
and h can then be obtained by solving equation (2). Shown in figure 1(a) is the thus-obtained p
as a function of temperature for a range of normalized fields h from 0 to 0.16 in steps of 0.02.

Once the temperature dependence for the above three quantities is known, we can perform
the Monte Carlo simulations of the magnetoresistance. The simulations are done on a two-
dimensional (20 × 20) matrix using Tc = 90 K, R0 = 10−3 �, Eg/kB = 1000 K and
b = 10−5 � K−2. The simulated data are plotted in figures 1(b) and 1(c) in various given
fields for the whole temperature range covering the high-T insulating behaviour and low-T
metallic behaviour with a temperature step of 5 K. Clearly, the main features of the colossal
MR generally reported for Re2/3B1/3MnO3 can be found from this set of resistance curves
indicated in figures 1(b) and 1(c). It is essential to note that the set of resistance curves is
obtained only through increasing fields that cause increases in p, but with the other parameters
(Tc, R0, b and Eg) remaining unchanged. We therefore naturally suggest that the colossal MR
originates mainly from the field-induced increase in the number density (volume fraction) of
FM metallic particles.

To be convincing, we must show that we can yield quantitatively experimental data for
the temperature dependence of the colossal MR through the Monte Carlo simulations. For this
purpose, we have measured the temperature dependence of the resistance for fields of 0 and
5 T in (La0.8Y0.2)2/3Ca1/3MnO3. This sample is the same as that used in recent studies [15].
The experimental data are plotted in figure 2(a) (open circles). The simulation of the zero-field
R versus T dependence has been presented elsewhere [15] using RPM = 4.34 × 10−3e1184.5/T

(�) andRFM = 1.0×10−5T 2 (�). This is replotted in figure 2(a) as a function of temperature
with the corresponding experimental data (open circles), where p is used as a fitting parameter
which is plotted in figure 2(b) as a function of temperature. In figure 2(b), we also present a
comparison between the p-values (solid circles) used in the simulation and the m (solid line)
determined from equation (2) using Tc = 87 K and h = 0. It can be found that at temperatures
slightly lower thanTc thep-values used in the simulation have the same values as those obtained
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Figure 1. Temperature dependences of the number density of FM metallic particles (a) and of
resistance ((b), (c)) for fields of h = 0–0.16 in steps of 0.02. p is calculated from the mean-
field self-consistency equation with J = 1.83 and Tc = 90 K. Symbols in (b) and (c) represent
resistance data at various representative fields which are obtained through the Monte Carlo method
in temperature steps of 5 K using f -values indicated in (a); RPM = 1 × 10−3e1000/T (�) and
RFM = 1.0 × 10−5T 2 (�). The solid lines in (b) and (c) are drawn as guides to the eye.
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Figure 2. Temperature dependences of the resistance for fields of 0 and 5 T in the compound
(L0.8Y0.2)2/3Ca1/3MnO3: (a) comparisons of the resistance between simulated (solid circles) and
experimental (open circles) data and (b) comparisons between p used in the simulation (solid
circles) and m determined from the mean-field theory (solid lines).

by the mean-field theory, but a larger difference between them exists at temperatures around
Tc. This difference around Tc should be a consequence of dynamic phase segregation that
creates short-range FM domains within the PM matrix. Detailed discussions for the case of
zero field have been presented elsewhere [15]. In the present work, we will show that using
these quantities (RPM , RFM and Tc) obtained from the zero-field data, the MR data can be
quantitatively yielded through the Monte Carlo method.

For the case of applying the field, we directly usem as p in order to limit the randomness.
Using h = 0.15, J = 1.83 and Tc = 87 K, p is calculated from equation (2) which is plotted
in figure 2(b) as a function of temperature. The simulation is performed on a two-dimensional
matrix of N ×N . We find that the simulated results clearly show a diverging behaviour for a
smaller matrix withN < 20 but vary in a regular fashion for a larger matrix withN � 20. We
therefore choose a 30 × 30 matrix for the present simulations. Using the p-values indicated
in figure 2(b), we have performed the Monte Carlo simulation of resistance as a function of
temperature for the field of 5 T. The simulated data (solid circles) with a temperature step
of 5 K are superimposed on the corresponding experimental data (open circles) as indicated
in figure 2(a). Indeed as seen in the figure, excellent agreement is obtained between the
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simulated and experimental data for the whole temperature range studied. Here we emphasize
again that in the present simulation, except for p, all other quantities are determined from
zero-field resistance data such as RPM = 4.34 × 10−3e1184.5/T �, RFM = 1.0 × 10−5T 2 �

and Tc ∼ 87 K. Making a comparison between p-values for fields of 0 and 5 T, it is clear that
the colossal MR originates mainly from the field-induced substantial increase in the volume
fraction of FM metallic phase.

In summary, we have shown that the colossal MR can be quantitatively explained by
considering that FM metallic and PM insulating regions randomly fill the space of the sample.
The Monte Carlo simulation of magnetoresistance yields the main features of the colossal
MR generally observed in doped manganese perovskites and shows excellent agreement with
experimental observations on (La0.8Y0.2)2/3Ca1/3MnO3. The essential conclusion is that the
colossal MR originates mainly from the increase in the volume fraction of the FM metallic phase
caused by the application of the fields. Further understanding is needed for the mechanism of
formation of the FM metallic phase within the PM insulating matrix and the physical basis of
the present approach, which will be given elsewhere.

This work was supported by Trans-Century Training Programme Foundation for Talents by
the Ministry of Education.
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